A block of mass $1\,\, kg$ is hanging vertically from a string of length $1\,\, m$ and mass /length $= 0.001\,\, Kg/m$. A small pulse is generated at its lower end. The pulse reaches the top end in approximately .... $\sec$

107-161

  • A

    $0.2$

  • B

    $0.1$

  • C

    $0.02$

  • D

    $0.01$

Similar Questions

A transverse wave travels on a taut steel wire with a velocity of ${v}$ when tension in it is $2.06 \times 10^{4} \;\mathrm{N} .$ When the tension is changed to $T$. the velocity changed to $\frac v2$. The value of $\mathrm{T}$ is close to

  • [JEE MAIN 2020]

A wire of $10^{-2} kgm^{-1}$ passes over a frictionless light pulley fixed on the top of a frictionless inclined plane which makes an angle of $30^o$ with the horizontal. Masses $m$ and $M$ are tied at two ends of wire such that m rests on the plane and $M$ hangs freely vertically downwards. The entire system is in equilibrium and a transverse wave propagates along the wire with a velocity of $100 ms^{^{-1}}$.

A uniform thin rope of length $12\, m$ and mass $6\, kg$ hangs vertically from a rigid support and a block of mass $2\, kg$ is attached to its free end. A transverse short wavetrain of wavelength $6\, cm$ is produced at the lower end of the rope. What is the wavelength of the wavetrain (in $cm$ ) when it reaches the top of the rope $?$

  • [JEE MAIN 2020]

A string of length $L$ and mass $M$ hangs freely from a fixed point. Then the velocity of transverse waves along the string at a distance $x$ from the free end is

The extension in a string, obeying Hooke's law, is $x$. The speed of sound in the stretched string is $v$. If the extension in the string is increased to $1.5x$, the speed of sound will be