- Home
- Standard 11
- Physics
A body cools from $62\,^oC$ to $50\,^oC$ in $10\, minutes$ and to $42\,^oC$ in the next $10\, minutes$. The temperature of the surrounding is ........ $^oC$
$16$
$26$
$36$
$21$
Solution
Let the temperature of the surrounding be $\theta_{0}$.
According to Newton's law of cooling.
$\frac{62-50}{10}=\mathrm{K}\left(\frac{62+50}{2}-\theta_{0}\right)$
$\text { or } \frac{12}{10}=\mathrm{K}\left[\frac{112}{2}-\theta_{0}\right]$ $…(i)$
and $\frac{50-42}{10}=K\left[\frac{50+42}{2}-\theta_{0}\right]$
or $\frac{8}{10}=K\left[\frac{92}{2}-\theta_{0}\right]$ $…(ii)$
Divide eqn. $(i)$ by $(ii),$ we get;
$\frac{12}{10} \times \frac{10}{8}=\frac{112-2 \theta_{0}}{92-2 \theta_{0}}$ or $\frac{3}{2}=\frac{112-2 \theta_{0}}{92-2 \theta_{0}}$
or $\quad 276-6 \theta_{0}=224-4 \theta_{0}$
or $276-224=2 \theta_{0}$ or $\theta_{0}=\frac{52}{2}=26^{\circ} \mathrm{C}$