A body is at rest at $x=0$. At $t=0$, it starts moving in the positive $x-$ direction with a constant acceleration. At the same instant another body passes through $x=0$ moving in the positive $x$ direction with a constant speed. The position of the first body is given by $x_{1} (t)$ after time $t$ and that of the second body by $x_{2}(t)$ after the same time interval. Which of the following graphs correctly describe $\left(x_{1}-x_{2}\right)$ as a function of time $t$?

  • [AIEEE 2008]
  • A
    16-a98
  • B
    16-b98
  • C
    16-c98
  • D
    16-d98

Similar Questions

Given figure shows the $x-t$ plot of one-dimensional motion of a particle. Is it correct to say from the graph that the particle moves in a straight line for $t < 0$ and on a parabolic path for $t >0$? If not, suggest a suitable physical context for this graph.

The acceleration of a train between two stations is shown in the figure. The maximum speed of the train is $............\,m/s$

A car moving with a speed of $40\, km/h$ can be stopped by applying brakes after atleast $2\, m$. If the same car is moving with a speed of $80 \,km/h$, what is the minimum stopping distance............$m$

  • [AIPMT 1998]

When acceleration and average acceleration are equal for moving object ?

A particle starts from rest, accelerates at $2 \,ms^{-2}$ for $10\,s$ and then goes for constant speed for $30\,s$ and then decelerates at $ 4\, ms^{-2}$ till it stops. What is the distance travelled by it.........$m$

  • [AIIMS 2002]