- Home
- Standard 11
- Physics
4-2.Friction
hard
A body is moving down a long inclined plane of slope $37^o$. The coefficient of friction between the body and plane varies as $\mu=0.3 x$, where $x$ is distance travelled down the plane. The body will have maximum speed. $\left(\sin 37{ }^{\circ}=\frac{3}{5}\right.$ and $\left.g=10\,m / s ^2\right)$
Aat $x=1.16\,m$
Bat $x=2\,m$
Cat $x=2.5\,m$
Dat bottom of plane
Solution
At the $x$ increases, $u \uparrow a \downarrow$
so when $a =0$ instant give maximum speed $g \sin 37^{\circ}-(0.3) x g \cos 37^{\circ}=0$
$6-\frac{3}{10} \times x \times 8=0$
$x=\frac{60}{3 \times 8}=\frac{20}{8}=2.5\,m$
so when $a =0$ instant give maximum speed $g \sin 37^{\circ}-(0.3) x g \cos 37^{\circ}=0$
$6-\frac{3}{10} \times x \times 8=0$
$x=\frac{60}{3 \times 8}=\frac{20}{8}=2.5\,m$
Standard 11
Physics
Similar Questions
medium