A body is projected horizontally from a height with speed $20$ metres/sec. ........ $metres/sec$ will be its speed after $5$ seconds ($g = 10\,\,metres/{\sec ^2})$
$54$
$20$
$50$
$70$
A child stands on the edge of the cliff $10\,m$ above the ground and throws a stone horizontally with an initial speed of $5\,ms ^{-1}$. Neglecting the air resistance, the speed with which the stone hits the ground will be $..........ms ^{-1}$ (given, $g =10\,ms ^{-2}$)
A ball of mass $0.2 \ kg$ rests on a vertical post of height $5 m$. A bullet of mass $0.01 \ kg$, traveling with a velocity $V / s$ in a horizontal direction, hits the centre of the ball. After the collision, the ball and bullet travel independently. The ball hits the ground at a distance of $20 \ m$ and the bullet at a distance of $100 \ m$ from the foot of the post. The initial velocity $V$ of the bullet is
An aeroplane is flying at a constant horizontal velocity of $600\, km/hr $ at an elevation of $6\, km$ towards a point directly above the target on the earth's surface. At an appropriate time, the pilot releases a ball so that it strikes the target at the earth. The ball will appear to be falling
A man runs across the roof, top of a tall building and jumps horizontally with the hope of landing on the roof of the next building which is at a lower height than the first. If his speed is $9\, m/s$. the (horizontal) distance between the two buildings is $10\, m$ and the height difference is $9\, m$, will be able to land on the next building ? $($ Take $g = 10 \,m/s^2)$