A body of length 1m having cross sectional area $0.75\;m^2$ has heat flow through it at the rate of $ 6000\; Joule/sec$ . Then find the temperature difference if $K = 200\;J{m^{ - 1}}{K^{ - 1}}$ ...... $^oC$

  • A

    $20$

  • B

    $40$

  • C

    $80$

  • D

    $100$

Similar Questions

Two thin metallic spherical shells of radii ${r}_{1}$ and ${r}_{2}$ $\left({r}_{1}<{r}_{2}\right)$ are placed with their centres coinciding. A material of thermal conductivity ${K}$ is filled in the space between the shells. The inner shell is maintained at temperature $\theta_{1}$ and the outer shell at temperature $\theta_{2}\left(\theta_{1}<\theta_{2}\right)$. The rate at which heat flows radially through the material is :-

  • [JEE MAIN 2021]

$A$ metal rod of length $2$$m$ has cross sectional areas $2A$ and $A$ as shown in figure. The ends are maintained at temperatures $100°C$ and $70°C$ . The temperature at middle point $C$ is...... $^oC$

Aring consisting of two parts $ADB$ and $ACB$ of same conductivity $k$ carries an amount of heat $H$. The $ADB$ part is now replaced with another metal keeping the temperatures $T_1$ and $T_2$ constant. The heat carried increases to $2H$. What $ACB$ should be the conductivity of the new$ADB$ part? Given $\frac{{ACB}}{{ADB}}= 3$

Three rods $A, B$ and $C$ of thermal conductivities $K, 2\,K$ and $4\,K$, cross-sectional  areas $A, 2\,A$ and $2\,A$ and lengths $2l, l$ and $l$ respectively are connected as shown  in the figure. If the ends of the rods are maintained at temperatures $100^o\,C, 50^o\,C$, and $0^o\,C$ respectively, then the temperature $\theta$ of the junction is ......... $^oC$

An iron bar $\left(L_{1}=0.1\; m , A_{1}\right.$ $\left.=0.02 \;m ^{2}, K_{1}=79 \;W m ^{-1} K ^{-1}\right)$ and a brass bar $\left(L_{2}=0.1\; m , A_{2}=0.02\; m ^{2}\right.$ $K_{2}=109 \;Wm ^{-1} K ^{-1}$ are soldered end to end as shown in Figure. The free ends of the iron bar and brass bar are maintained at $373 \;K$ and $273\; K$ respectively. Obtain expressions for and hence compute

$(i)$ the temperature of the junction of the two bars,

$(ii)$ the equivalent thermal conductivity of the compound bar, and

$(iii)$ the heat current through the compound bar.