A body of mass $0.01 kg$ executes simple harmonic motion $(S.H.M.)$ about $x = 0$ under the influence of a force shown below : The period of the $S.H.M.$ is .... $s$

97-9

  • A

    $1.05$

  • B

    $0.52$

  • C

    $0.25$

  • D

    $0.30$

Similar Questions

Find maximum amplitude for safe $SHM$ (block does not topple during $SHM$) of $a$ cubical block of side $'a'$ on a smooth horizontal floor as shown in figure (spring is massless)

A mass attached to a spring is free to oscillate, with angular velocity $\omega,$ in a hortzontal plane without friction or damping. It is pulled to a distance $x_{0}$ and pushed towards the centre with a velocity $v_{ o }$ at time $t=0 .$ Determine the amplitude of the resulting oscillations in terms of the parameters $\omega, x_{0}$ and $v_{ o } .$ [Hint: Start with the equation $x=a \cos (\omega t+\theta)$ and note that the initial velocity is negative.]

Two springs of force constants $300\, N / m$ (Spring $A$) and $400$ $N / m$ (Spring $B$ ) are joined together in series. The combination is compressed by $8.75\, cm .$ The ratio of energy stored in $A$ and $B$ is $\frac{E_{A}}{E_{B}} .$ Then $\frac{E_{A}}{E_{B}}$ is equal to

  • [AIIMS 2019]

Aheavy brass sphere is hung from a light spring and is set in vertical small oscillation with a period $T.$ The sphere is now immersed in a non-viscous liquid with a density $1/10\,th$ the density of the sphere. If the system is now set in vertical $S.H.M.,$ its period will be

Two identical springs of spring constant $k$ are attached to a block of mass $m$ and to fixed supports as shown in figure. When the mass is displaced from equilibrium position by a distance $x$ towards right, find the restoring force.