A bomb is projected upwards. At topmost point it explodes in three identical fragments. First fragment comes to ground in $10\ sec$. and others in $20\ sec$ each. Then the height reached by the original bomb is.........$m$
$800$
$1600$
$1250$
$1500$
A tennis ball is dropped on a horizontal smooth surface. It bounces back to its original position after hitting the surface. The force on the ball during the collision is proportional to the length of compression of the ball. Which one of the following sketches describes the variation of its kinetic energy $K$ with time $t$ most appropriately? The figures are only illustrative and not to the scale.
In an elastic collision of two billiard balls, which of the following quantities remain conserved during the short time of collision of the balls ? (i.e. when they are in contact)
$(a)$ Kinetic energy.
$(b)$ Total linear momentum.
Give reason for your answer in each case.
A ball is projected from top of a tower with a velocity of $5\,\, m/s$ at an angle of $53^o$ to horizontal. Its speed when it is at a height of $0.45 \,\,m$ from the point of projection is ........ $m/s$
A bomb of mass $10\, kg$ explodes into two pieces of masses $4\, kg$ and $6\, kg$. If kinetic energy of $4\, kg$ piece is $200\, J$. Find out kinetic energy of $6\, kg$ piece
A particle of mass $m$ moving horizontally with $v_0$ strikes $a$ smooth wedge of mass $M$, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to $a$ height $h$. Choose the correct statement(s) related to particle $m$