A certain radioactive nuclide of mass number $m_x$ disintegrates, with the emission of an electron and $\gamma$ radiation only, to give second nuclied of mass number $m_y.$ Which one of the following equation correctly relates $m_x$ and $m_y$ ?
$m_y = m_x + 1$
$m_y = m_x - 2$
$m_y = m_x - 1$
$m_y = m_x$
A sample initially contains only $U -238$ isotope of uranium. With time, some of the $U -238$ radioactively decays into $Pb -206$ while the rest of it remains undisintegrated.
When the age of the sample is $P \times 10^8$ years, the ratio of mass of $Pb -206$ to that of $U -238$ in the sample is found to be $7$ . The value of $P$ is. . . . . .
[Given : Half-life of $U-238$ is $4.5 \times 10^9$ years; $\log _e 2=0.693$ ]
For a radioactive material, half-life is $10$ minutes. If initially there are $600$ number of nuclei, the time taken (in minutes) for the disintegration of $450$ nuclei is
In a radioactive decay chain reaction, ${ }_{90}^{230} Th$ nucleus decays into ${ }_{84}^{214} Po$ nucleus. The ratio of the number of $\alpha$ to number of $\beta^{-}$particles emitted in this process is. . . . .
The decay constant of a radioactive element is $1.5 \times {10^{ - 9}}$ per second. Its mean life in seconds will be
Consider an initially pure $M$ gm sample of$_ A{X}$, an isotope that has a half life of $T$ hour, what is it’s initial decay rate ($N_A$ = Avogrado No.)