A charge $Q$ is uniformly distributed over a large square plate of copper. The electric field at a point very close to the centre of the plane is $10\, V/m$. If the copper plate is replaced by a plastic plate of the same geometrical dimensions and carrying the same charge $Q$ uniformly distributed, then the electric field at the point $P$ will be......$V/m$
$5 $
$0$
$10$
$20$
If the total charge enclosed by a surface is zero, does it imply that the electric field everywhere on the surface is zero ? Conversely, if the electric field everywhere on a surface is zero, does it imply that net charge inside is zero.
A conducting sphere of radius $R = 20$ $cm$ is given a charge $Q = 16\,\mu C$. What is $\overrightarrow E $ at centre
Consider a uniform spherical volume charge distribution of radius $R$. Which of the following graphs correctly represents the magnitude of the electric field $E$ at a distance $r$ from the centre of the sphere?
Two concentric conducting thin spherical shells of radii $a$ and $b\ (b > a)$ are given charges $Q$ and $ -2Q$ respectively. The electric field along a line passing through centre as a function of distance $(r)$ from centre is given by
The electric field at $20 \,cm$ from the centre of a uniformly charged non-conducting sphere of radius $10 \,cm$ is $E$. Then at a distance $5 \,cm$ from the centre it will be