A charged water drop whose radius is $0.1\,\mu m$ is in equilibrium in an electric field. If charge on it is equal to charge of an electron, then intensity of electric field will be.......$N/C$ $(g = 10\,m{s^{ - 1}})$

  • A

    $1.61$

  • B

    $26.2$

  • C

    $262$

  • D

    $1610$

Similar Questions

Electric field at centre $O$ of semicircle of radius $a$ having linear charge density $\lambda$ given is given by

  • [AIPMT 2000]

An infinite number of electric charges each equal to $5\, nC$ (magnitude) are placed along $X$-axis at $x = 1$ $cm$, $x = 2$ $cm$ , $x = 4$ $cm$ $x = 8$ $cm$ ………. and so on. In the setup if the consecutive charges have opposite sign, then the electric field in Newton/Coulomb at $x = 0$ is $\left( {\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {{10}^9}\,N - {m^2}/{c^2}} \right)$

Two charges $e$ and $3 e$ are placed at a distance $r$. The distance of the point where the electric field intensity will be zero is .........

A charged ball $B$ hangs from a silk thread $S$, which makes an angle $\theta $ with a large charged conducting sheet $P$, as shown in the figure. The surface charge density $\sigma $ of the sheet is proportional to

  • [AIEEE 2005]

Two charges $q$ and $3 q$ are separated by a distance ' $r$ ' in air. At a distance $x$ from charge $q$, the resultant electric field is zero. The value of $x$ is :

  • [JEE MAIN 2024]