- Home
- Standard 11
- Physics
9-1.Fluid Mechanics
normal
A cone of radius $R$ and height $H$, is hanging inside a liquid of density $\rho$ by means of a string as shown in the figure. The force, due to the liquid acting on the slant surface of the cone is

A
$\rho \pi gHR^2$
B
$\pi \rho HR^2$
C
$\frac{4}{3}$ $ \pi \rho gHR^2$
D
$\frac{2}{3}$ $ \pi \rho gHR^2 $
Solution
$H \rho g \pi R^{2}-F_{a}=F_{B}$
$F_{B}=V \rho g=\frac{1}{3} \pi R^{2} H \rho g$
$\therefore F_{3}=H \rho g \pi R^{2}-\frac{H \rho g \pi R^{2}}{3}=\frac{2}{3} \pi R^{2} \rho G h$
Standard 11
Physics