Gujarati
Hindi
6.System of Particles and Rotational Motion
medium

A flywheel is making $\frac{3000}{\pi}$ revolutions per minute about its axis. If the  moment of inertia of the flywheel about that axis is $400\, kgm^2$, its rotational kinetic  energy is 

A

$2 \times 10^6\, J$

B

$3 \times 10^3\, J$

C

$500\,\pi^2 \,J$

D

$12 \times 10^3\, J$

Solution

Revolutions per minute $(\mathrm{N})=\frac{3000}{\pi} \mathrm{rpm}$

so, frequency, $n=\frac{N}{60}=\frac{3000}{60 \times \pi}=\frac{50}{\pi} \mathrm{Hz}$

and $\quad \omega=2 \pi n=2 \pi \times \frac{50}{\pi}=100 \mathrm{rad} / \mathrm{sec}$

$\mathrm{I}=400 \mathrm{kg} \mathrm{m}^{2}$

so rotational kinetic energy $(K)$ is

$\mathrm{K}=\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2} \times 400 \times(100)^{2}=2 \times 10^{6} \mathrm{Joule}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.