A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$
$4.5$
$6.5$
$7.5$
$9.5$
A force $F$ acting on an object varies with distance $x$ as shown in the figure. The work done by the force in moving the object from $x = 0$ to $x = 8\,m$ is ......... $J$
After head on elastic collision between two balls of equal masses , one is observed to have a speed of $3\,\,m/s$ along positive $x-$ axis and the other has a speed of $2\,\,m/s$ along negative $x$ axis. The original velocities of the balls are
$ABCDE$ is a channel in the vertical plane, part $BCDE$ being circular with radius $r$ . A block is released from $A$ and slides without friction and without rolling. The block will complete the loop if $h$ is
If the kinetic energy of a body is directly proportional to time $t$, the magnitude of force acting on the body is
$(i)$ directly proportional to $\sqrt t$
$(ii)$ inversely proportional to $\sqrt t$
$(iii)$ directly proportional to the speed of the body
$(iv)$ inversely proportional to the speed of body
If $F = 2x^2 -3x -2$, then choose correct option