A gun can fire shells with maximum speed $v_0$ and the maximum horizontal range that can be achieved is $R_{max} = \frac {v_0^2}{g}$. If a target farther away by distance $\Delta x$ (beyond $R$) has to be hit with the same gun, show that it could be achieved by raising the gun to a height at least $h = \Delta x\,\left[ {1 + \frac{{\Delta x}}{R}} \right]$.
This problem can be approached in two different ways.
$(i)$ Refer to the diagram target $\mathrm{T}$ is at horizontal distance $x=\mathrm{R}+\Delta x$ and between point projection $y=-h$.
$(ii)$ From point $\mathrm{P}$ in the diagram projection at speed $v_{0}$ at an angle $\theta$ below horizontal with height $h$ and horizontal range $\Delta x \mathrm{~A}$ )
Applying method $(i)$, Maximum horizontal range, $\mathrm{R}=\frac{v_{0}^{2}}{g}$, for $\theta=45^{\circ}$
Let the gun be raised through a height $h$ from the ground so that it can hit the target. Let vertically downward direction is taken as positive.
Horizontal component of initial velocity $=v_{0} \cos \theta$
Vertical component of initial velocity $=-v_{0} \sin \theta$
Taking motion in vertical direction, $h=\left(-v_{0} \sin \theta\right) t+\frac{1}{2} g t^{2}$
Taking motion in horizontal direction, $(\mathrm{R}+\Delta x)=v_{0} \cos \theta \times t$
$\therefore t=\frac{(\mathrm{R}+\Delta x)}{v_{0} \cos \theta}$
Substituting value of $t$ in equ. (ii) we get
$h$$=-v_{0} \sin \theta \times\left(\frac{ R _{\max }+\Delta x}{v_{0} \cos \theta}\right)+\frac{1}{2} g\left(\frac{ R _{\max }+\Delta x}{v_{0} \cos \theta}\right)^{2}$
$h$$=-\tan \theta\left( R _{\max }+\Delta x\right)+\frac{1}{2} \frac{g\left( R _{\max }+\Delta x\right)^{2}}{v_{0}^{2} \cos \theta}$
At the top of the trajectory of a projectile, the directions of its velocity and acceleration are
The maximum horizontal range of a projectile is $16\,km$ when the projectile is thrown at an elevation of $30^o$ from the horizontal, it will reach to the maximum height of ....... $km$
A ball is thrown from a roof top at an angle of $45^o$ above the horizontal. It hits the ground a few seconds later. At what point during its motion, does the ball have $(a)$ greatest speed $(b)$ smallest speed $(c)$ greatest acceleration - Explain.
Which of the following is the graph between the height $(h)$ of a projectile and time $(t)$, when it is projected from the ground
The range of a particle when launched at an angle of ${15^o}$ with the horizontal is $1.5 \,km$. What is the range of the projectile when launched at an angle of ${45^o}$ to the horizontal ........ $km$