Gujarati
Hindi
9-1.Fluid Mechanics
hard

A hemispherical portion of radius $R$ is removed from the bottom of a cylinder of radius $R$. The volume of the remaining cylinder is $V$ and mass $M$. It is suspended by a string in a liquid of density $\rho$, where it stays vertical. The upper surface of cylinder is at a depth $h$ below the liquid surface. The force on the bottom of the cylinder by the liquid is

A

$\rho g (V + \pi R^2)$

B

$Mg$

C

$Mg - V \rho g$

D

$\rho g (V + \pi R^2 h)$

Solution

$\mathrm{F}_{2}-\mathrm{F}_{1}=$ upthrust

$\therefore \mathrm{F}_{2}=\mathrm{F}_{1}+$ upthrust

$\mathrm{F}_{2}=\left(\mathrm{p}_{0}+\rho \mathrm{gh}\right) \pi \mathrm{R}^{2}+v\rho g$

$=\mathrm{p}_{0} \pi \mathrm{R}^{2}+\rho \mathrm{g}\left(\pi \mathrm{R}^{2} \mathrm{h}+\mathrm{V}\right)$

Most appropriate option is $(D).$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.