A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^2+4 y^2=12$. Then its equation is

  • [IIT 2007]
  • A

    $x^2 \operatorname{cosec}^2 \theta-y^2 \sec ^2 \theta=1$

  • B

    $x^2 \sec ^2 \theta-y^2 \operatorname{cosec}^2 \theta=1$

  • C

    $x^2 \sin ^2 \theta-y^2 \cos ^2 \theta=1$

  • D

    $x^2 \cos ^2 \theta-y^2 \sin ^2 \theta=1$

Similar Questions

If the line $y = 2x + \lambda $ be a tangent to the hyperbola $36{x^2} - 25{y^2} = 3600$, then $\lambda = $

If $A$ and $B$ are the points of intersection of the circle $x^2+y^2-8 x=0$ and the hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$ and $a$ point $P$ moves on the line $2 x-3 y+4=0$, then the centroid of $\triangle P A B$ lies on the line :

  • [JEE MAIN 2025]

Eccentricity of rectangular hyperbola is

If $ P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3) $ and $ S(x_4, y_4) $ are $4 $ concyclic points on the rectangular hyperbola $x y = c^2$ , the co-ordinates of the orthocentre of the triangle $ PQR$  are :

If the foci of a hyperbola are same as that of the ellipse $\frac{x^2}{9}+\frac{y^2}{25}=1$ and the eccentricity of the hyperbola is $\frac{15}{8}$ times the eccentricity of the ellipse, then the smaller focal distance of the point $\left(\sqrt{2}, \frac{14}{3} \sqrt{\frac{2}{5}}\right)$ on the hyperbola, is equal to

  • [JEE MAIN 2024]