A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^2+4 y^2=12$. Then its equation is
$x^2 \operatorname{cosec}^2 \theta-y^2 \sec ^2 \theta=1$
$x^2 \sec ^2 \theta-y^2 \operatorname{cosec}^2 \theta=1$
$x^2 \sin ^2 \theta-y^2 \cos ^2 \theta=1$
$x^2 \cos ^2 \theta-y^2 \sin ^2 \theta=1$
If the line $y = 2x + \lambda $ be a tangent to the hyperbola $36{x^2} - 25{y^2} = 3600$, then $\lambda = $
Eccentricity of rectangular hyperbola is
If $ P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3) $ and $ S(x_4, y_4) $ are $4 $ concyclic points on the rectangular hyperbola $x y = c^2$ , the co-ordinates of the orthocentre of the triangle $ PQR$ are :
If the foci of a hyperbola are same as that of the ellipse $\frac{x^2}{9}+\frac{y^2}{25}=1$ and the eccentricity of the hyperbola is $\frac{15}{8}$ times the eccentricity of the ellipse, then the smaller focal distance of the point $\left(\sqrt{2}, \frac{14}{3} \sqrt{\frac{2}{5}}\right)$ on the hyperbola, is equal to