Gujarati
Hindi
10-1.Thermometry, Thermal Expansion and Calorimetry
normal

A lead bullet at $27\,^oC$ just melts when stopped by an obstacle. Assuming that $25\%$ of heat is absorbed by the obstacle, then the velocity of the bullet at the time of striking is  ........ $m/s$ ( $M.P.$ of lead = $327\,^oC$, specific heat of lead $= 0.03\,cal/g\,^oC$, latent heat of fusion of lead $= 6\,cal/g$ and $J = 4.2\,joule/cal$ )

A

$410$

B

$1230$

C

$307.5$

D

None of the above

Solution

If mass of the bullet is $\mathrm{m}\, \mathrm{gm}$.

 then total heat required for bullet to just melt clown

$\mathrm{Q}_{1}=\mathrm{m} \mathrm{c} \Delta \theta+\mathrm{mL}=\mathrm{m} \times 0.03(327-27)+\mathrm{m} \times 6$

$=15 \mathrm{m} \mathrm{cal}=(15 \mathrm{m} \times 4.2) \mathrm{J}$

Now when bullet is stopped by the obstacle, the loss in its mechanical energy $=\frac{1}{2}\left(\mathrm{m} \times 10^{-3}\right) \mathrm{v}^{2} \mathrm{J}$

(As $\left.\mathrm{mg}=\mathrm{m} \times 10^{-3} \mathrm{kg}\right)$

As $25 \%$ of this energy is absorbed by the obstacle. The energy absorbed by the bullet

$\mathrm{Q}_{2}=\frac{75}{100} \times \frac{1}{2} \mathrm{mv}^{2} \times 10^{-3}=\frac{3}{8} \mathrm{mv}^{2} \times 10^{-3} \mathrm{J}$

Now the bullet will melt if $\mathrm{Q}_{2} \geq \mathrm{Q}_{1}$

i.e., $\frac{3}{8} \mathrm{mv}^{2} \times 10^{-3} \geq 15 \mathrm{m} \times 4.2 \Rightarrow \mathrm{v}_{\min }=410 \mathrm{m} / \mathrm{s}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.