Gujarati
Hindi
10-1.Thermometry, Thermal Expansion and Calorimetry
normal

A metallic rod $1\,cm$ long with a square cross-section is heated through $1^o C$. If Young’s modulus of elasticity of the metal is $E$ and the mean coefficient of linear expansion is $\alpha$ per degree Celsius, then the compressional force required to prevent the rod from expanding along its length is :(Neglect the change of cross-sectional area)

A

$EA\alpha t$

B

$EA\alpha t/(1 + \alpha t)$

C

$EA\alpha t/(1\alpha t)$

D

$E/\alpha t$

Solution

Thermal expansion in form of change in length (Linear expansion)

$l_{2}=l_{1}(1+\alpha t)$

change in length $=(l \Delta t)$

$\Delta t=\left(t_{2}-t_{1}\right)$

Young's Modulus $=E$

$E=\frac{F}{A} / \frac{l}{L}$

$E=F L / A l$

$L=(l+\Delta l)$

$L=l+\Delta l$

$E=\frac{F}{A} / \frac{l}{L}$

$E=F L / A l$

$E=\frac{F(l+\Delta l)}{A \Delta l}$

$F=E A \Delta l /(l+\Delta l)$

$F=\frac{E A(\alpha t)}{1+\alpha t}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.