- Home
- Standard 11
- Physics
A monoatomic ideal gas, initially at temperature $T_1$, is enclosed in a cylinder fitted with a frictionless piston. The gas is allowed to expand adiabatically to a temperature $T_2$ by releasing the piston suddenly. If $L_1$ and $L_2$ are the lengths of the gas column before and after expansion respectively, then $T_1/T_2$ is given by
${\left( {\frac{{{L_1}}}{{{L_2}}}} \right)^{\frac{2}{3}}}$
$\left( {\frac{{{L_1}}}{{{L_2}}}} \right)$
$\left( {\frac{{{L_2}}}{{{L_1}}}} \right)$
${\left( {\frac{{{L_2}}}{{{L_1}}}} \right)^{\frac{2}{3}}}$
Solution
For adiabatic process,
$\mathrm{T}_{1} \mathrm{V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{V}_{2}^{\gamma-1}$
$\mathrm{T}_{1}\left(\mathrm{L}_{1} \mathrm{A}\right)^{\frac{5}{3}-1}=\mathrm{T}_{2}\left(\mathrm{L}_{2} \mathrm{A}\right)^{\frac{5}{3}-1}$
$\frac{T_{1}}{T_{2}}=\left(\frac{L_{2}}{L_{1}}\right)^{\frac{2}{3}}$