A motor cyclist going round in a circular track at constant speed has
Constant linear velocity
Constant acceleration
Constant angular velocity
Constant force
Two particles $A$ and $B$ start at the origin $O$ and travel in opposite directions along the circular path at constant speeds $0.5\,m/s$ and $1.5\,m/s$ , respectively. The time when they collide with each other ........ $\sec$
If ${a_r}$ and ${a_t}$represent radial and tangential accelerations, the motion of a particle will be uniformly circular if
A man carrying a monkey on his shoulder does cycling smoothly on a circular track of radius $9 \mathrm{~m}$ and completes $120$ revolutions in $3$ minutes. The magnitude of centripetal acceleration of monkey is (in $\mathrm{m} / \mathrm{s}^2$ ):
A particle describes a horizontal circle in a conical funnel whose inner surface is smooth with speed of $0.5 \,m/s$. What is the height of the plane of circle from vertex of the funnel ........ $cm$
A particle is moving on a circular path with constant speed, then its acceleration will be