- Home
- Standard 11
- Physics
A newly discovered planet has a density eight times the density of the earth and a radius twice the radius of the earth. The time taken by $2\, kg$ mass to fall freely through a distance $S$ near the surface of the earth is $1$ second. Then the time taken for a $4\, kg$ mass to fall freely through the same distance $S$ near the surface of the new planet is ....... $\sec$.
$0.25$
$0.5$
$1$
$4$
Solution
Let the density of earth is $d$ and radius $R$
Then the density of the planet will be $8 \mathrm{d}$ and radius $2 \mathrm{R}$
Mass of Earth
$M=\frac{4}{3} \pi R^{3} \times d$
Mass of the planet
$M^{\prime}=\frac{4}{3} \pi \times(2 R)^{3} \times 8 d$
$\Longrightarrow M^{\prime}=64 M$
On Earth the acceleration due to gravity
$g=\frac{G M}{R^{2}}$
On the planet, the acceleration due to gravity of the planet
$g^{\prime}=\frac{G M^{\prime}}{(2 R)^{2}}$
$\Longrightarrow g^{\prime}=\frac{G \times 61 M}{4 R^{2}}$
$\Longrightarrow g^{\prime}=16 g$
On earth a mass of $2 \mathrm{kg}$ travels distance $\mathrm{S}$ in $1$ second
Therefore, using the second equation of motion
$S=0 \times 1+\frac{1}{2} g \times 1^{2}$
$\Longrightarrow S=\frac{g}{2}$
$\Longrightarrow 2 S=g$
Now on the planet if the time taken by the mass of $4 \mathrm{kg}$ to fall is $t$ then the acceleration due to the gravity of the planet acting on the body will be $g'$
Note that the acceleration due to the planets in either case will not depend upon the mass of the objects
Thus,
$S=0 \times t+\frac{1}{2} g^{\prime} t^{2}$
$\Longrightarrow S=\frac{1}{2} \times 16 g \times t^{2}$
or, $S=8 g t^{2}$
or, $S=8 \times 2 S \times t^{2}$
or, $t^{2}=\frac{1}{16}$
or, $t=\sqrt{\frac{1}{16}}$
or, $t=\frac{1}{4}$ seconds
or, $t=0.25$ seconds