A parallel plate capacitor of capacitance $C$ is connected to a battery and is charged to a potential difference $V$. Another capacitor of capacitance $2C$ is connected to another battery and is charged to potential difference $2V$ . The charging batteries are now disconnected and the capacitors are connected in parallel to each other in such a way that the positive terminal of one is connected to the negative terminal of the other. The final energy of the configuration is

  • A

    zero

  • B

    $\frac{{25C{V^2}}}{6}$

  • C

    $\frac{{3C{V^2}}}{2}$

  • D

    $\frac{{9C{V^2}}}{2}$

Similar Questions

The equivalent capacitance of the system of capacitors between $A$ and $B$ as shown in the figure

A hollow cylinder has charge $q$ $C$ within it. If $\phi $ is the electric flux in unit of voltmeter associated with the curved surface $B$, the flux linked with the plane surface $A$ in unit of voltmeter will be

The electric potential $V$ at any point $(x,y,z)$ in space is given by equation $V = 4x^2\,volt$ where $x, y$ and $z$ are all in metre. The electric field at the point $(1\,m, 0, 2\,m)$ in $V/m$ is

A charge $q$ is placed at $O$ in the cavity in a spherical uncharge $d$ conductor. Point $S$ is outside the conductor. If the charge is displaced from $O$ towards $S$ still remaining with in the cavity,

A square plate of side $'a'$ is placed in $xy$ plane having centre at origin if charge density of square plate is $\sigma = xy$ then. Total charge on the plate will be.