Gujarati
Hindi
1. Electric Charges and Fields
normal

A parallel plate capacitor with air between the plates has a capacitance of $9\, pF$. The separation between its plates is $'d'$. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $K_1=3$ and thickness $\frac{d}{3}$ while the other one has dielectric constant $K_2 = 6$ and thickness $\frac{2d}{3}$ . Capacitance of the capacitor is now.........$pF$

A

$1.8$

B

$45$

C

$40.5$

D

$20.25$

Solution

${\frac{\varepsilon_{\mathrm{o}} \mathrm{A}}{\mathrm{d}}=9 \mathrm{\,PF}} $

${{\rm{C}}^1} = \frac{{\frac{{{\varepsilon _{\rm{o}}} \times 3{\rm{A}}}}{{{\rm{d}}/3}} \times \frac{{{\varepsilon _{\rm{o}}} \times 6{\rm{A}}}}{{2{\rm{d}}/3}}}}{{\frac{{{\varepsilon _{\rm{o}}} \times 3{\rm{A}}}}{{{\rm{d}}/3}} + \frac{{{\varepsilon _{\rm{o}}} \times 6{\rm{A}}}}{{2{\rm{d}}/3}}}} = \frac{{\frac{{9{\varepsilon _{\rm{o}}}{\rm{A}}}}{{\rm{d}}} \times \frac{{9{\varepsilon _{\rm{o}}}{\rm{A}}}}{{2{\rm{d}}}}}}{{\frac{{18{\varepsilon _{\rm{o}}}{\rm{A}}}}{{2{\rm{d}}}}}} = \frac{9}{2}\frac{{{\varepsilon _{\rm{o}}}{\rm{A}}}}{{\rm{d}}}$

$ {\mathrm{C}^{1}=\left(\frac{9}{2} \times 9\right) \mathrm{\,pF}=40.5 \mathrm{\,pF}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.