A particle is projected from the ground with an initial speed $\upsilon $ at an angle $\theta $ with horizontal. The average velocity of the particle between its point of projection and highest point of trajectory is
$\frac{\upsilon }{2}\sqrt {1 + 2\,\,{{\cos }^{2\,}}\theta } $
$\frac{\upsilon }{2}\sqrt {1 + {{\cos }^{2\,}}\theta } $
$\frac{\upsilon }{2}\sqrt {1 + 3\,\,{{\cos }^{2\,}}\theta } $
$\upsilon \,\cos \,\theta $
The range of a projectile for a given initial velocity is maximum when the angle of projection is ${45^o}$. The range will be minimum, if the angle of projection is ......... $^o$
Which one of the following statements is not true about the motion of a projectile?
For a given angle of the projectile if the initial velocity is doubled the range of the projectile becomes
In dealing with motion of projectile in air, we ignore effect of air resistance on motion. This give trajectory as a parabola as you have studied. What would the trajectory look like if air resistance is include ? Sketch such a trajectory and explain why you have drawn it that way.
A stone is projected from the ground with velocity $50 \,m/s$ at an angle of ${30^o}$. It crosses a wall after $3$ sec. How far beyond the wall the stone will strike the ground .......... $m$ $(g = 10\,m/{\sec ^2})$