A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously (Assuming particle is initially at rest)
${\vec F_1} = 5\hat i - 5\hat j + 5\hat k$ ${\vec F_2} = 2\hat i + 8\hat j + 6\hat k$
${\vec F_3} = - 6\hat i + 4\hat j - 7\hat k$ ${\vec F_4} = - \hat i - 3\hat j - 2\hat k$
Then the particle will move
in $X-Y$ plane
$Y-Z$ plane
in $Z-X$ plane
along $X-axis$
Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is
Given that; $A = B = C$. If $\vec A + \vec B = \vec C,$ then the angle between $\vec A$ and $\vec C$ is $\theta _1$. If $\vec A + \vec B+ \vec C = 0,$ then the angle between $\vec A$ and $\vec C$ is $\theta _2$. What is the relation between $\theta _1$ and $\theta _2$ ?
If vectors $P, Q$ and $R$ have magnitude $5, 12$ and $13 $ units and $\overrightarrow P + \overrightarrow Q = \overrightarrow R ,$ the angle between $Q$ and $R$ is
The resultant of $\overrightarrow P $ and $\overrightarrow Q $ is perpendicular to $\overrightarrow P $. What is the angle between $\overrightarrow P $ and $\overrightarrow Q $