2.Motion in Straight Line
medium

A particle moves in a straight line and its position $x$ at time $t$ is given by $x^2=2+t$. Its acceleration is given by

A

$\frac{-2}{x^3}$

B

$-\frac{1}{4 x^3}$

C

$-\frac{1}{4 x^2}$

D

$\frac{1}{x^2}$

Solution

(b)

$x^2=t+2 \Rightarrow \frac{1}{x^2}=\frac{1}{t+2}$

$\Rightarrow x=\sqrt{t+2}$

$\Rightarrow \frac{d x}{d t}=\frac{1}{2}(t+2)^{\frac{1}{2}-1}$

$\Rightarrow \frac{d x}{d t}=\frac{1}{2}(t+2)^{-\frac{1}{2}}$

$\Rightarrow \frac{d^2 x}{d t^2}=\frac{1}{2}\left(-\frac{1}{2}\right)^{(i)}(t+2)^{-\frac{1}{2}-1}$

$\Rightarrow a=-\frac{1}{4}(t+2)^{-\frac{3}{2}}=-\frac{1}{4(t+2)} \times \frac{1}{(t+2)^{\frac{1}{2}}}=-\frac{1}{4} \times \frac{1}{x^2} \times \frac{1}{x}$

$\Rightarrow a=-\frac{1}{4 x^3}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.