- Home
- Standard 11
- Physics
3-2.Motion in Plane
normal
A particle of mass $m$ is projected with a velocity $V$ making an angle of $45^o$ with the horizontal. The magnitude of the angular momentum of the projectile about the point of projection when the particle is at its maximum height $h$ is
A
zero
B
$\frac{{m{V^2}}}{{\sqrt 2 \,g}}$
C
$\frac{{m{V^2}}}{{4\sqrt 2 \,g}}$
D
$m\sqrt {2g{h^3}} $
Solution
Momentum at the highest point
$=m V \cos 45^{\circ}=\frac{m V}{\sqrt{2}}$
Maximum height $=h$
$h=\frac{V^{2} \sin ^{2} 45^{\circ}}{2 g}=\frac{V^{2}}{4 g}$
Angular momentum $=L$
$L=$momentum$\times$height$=\frac{m V}{\sqrt{2}} \times \frac{V^{2}}{4 g}=\frac{m V^{3}}{4 \sqrt{2} g}$
But $\quad \frac{V^{2}}{4 g}=h \quad$ or $\quad V=\sqrt{4 g h}$
$L=\frac{m}{4 \sqrt{2}} \frac{(4 g h)^{3 / 2}}{g}=m \sqrt{2 g h^{3}}$
Standard 11
Physics
Similar Questions
normal