A particle of mass $m$ and charge $q$ , moving with velocity $V$ enters region $II$ normal to the boundary as shown in the figure. Region $II$ has a uniform magnetic field $B$ perpendicular to the plane of the paper. The length of the region $II$ is $l$ . Choose the not correct choice

816-453

  • A

    The particle enters Region $III$ only if its velocity $V > \frac{{qlB}}{m}$

  • B

    The particle enters Region $III$ only if its velocity $V < \frac{{qlB}}{m}$

  • C

    Path length of the particle in Region $II$ is maximum when velocity $V = \frac{{qlB}}{m}$

  • D

    Time spent in Region $III$ is same for any velocity $V$ as long as the particle returns to Region $I$

Similar Questions

A particle of charge $q$ and velocity $v$ passes undeflected through a space with non-zero electric field $E$ and magnetic field $B$. The undeflecting conditions will hold if.

An electron is projected normally from the surface of a sphere with speed $v_0$ in a uniform magnetic field perpendicular to the plane of the paper such that its strikes symmetrically opposite on the sphere with respect to the $x-$ axis. Radius of the sphere is $'a'$ and the distance of its centre from the wall is $'b'$ . What should be magnetic field such that the charge particle just escapes the wall

$A$ particle having charge $q$ enters a region of uniform magnetic field $\vec B$ (directed inwards) and is deflected a distance $x$ after travelling a distance $y$. The magnitude of the momentum of the particle is: 

An electron enters the space between the plates of a charged capacitor as shown. The charge density on the plate is $\sigma $. Electric intensity in the space between the plates is $E$. A uniform magnetic field $B$ also exists in that space perpendicular to the direction of $E$. The electron moves perpendicular to both $\vec E$ and $\vec B$ without any change in direction. The time taken by the electron to travel a distance $\ell $ is the space is

In an experiment, electrons are accelerated, from rest, by applying, a voltage of $500 \,V.$ Calculate the radius of the path if a magnetic field $100\,mT$ is then applied. [Charge of the electron $= 1.6 \times 10^{-19}\,C$ Mass of the electron $= 9.1 \times 10^{-31}\,kg$ ]

  • [JEE MAIN 2019]