Gujarati
4-1.Newton's Laws of Motion
medium

A particle of mass $\mathrm{m}$ is moving in the $x y$-plane such that its velocity at a point $(x, y)$ is given as $\vec{v}=\alpha(y \hat{x}+2 x \hat{y})$, where $\alpha$ is a non-zero constant. What is the force $\vec{F}$ acting on the particle?

A

$\vec{F}=2 m \alpha^2(x \hat{x}+y \hat{y})$

B

$\vec{F}=m \alpha^2(y \hat{x}+2 x \hat{y})$

C

$\vec{F}=2 m \alpha^2(y \hat{x}+x \hat{y})$

D

$\vec{F}=m \alpha^2(x \hat{x}+2 y \hat{y})$

(IIT-2023)

Solution

$\vec{v}=\alpha(y \hat{x}+2 x \hat{y})$

$v_x=\alpha y$

$\frac{d v_x}{d t}=\alpha \frac{d y}{d t}=2 \alpha^2 x \quad \frac{d v_y}{d t}=2 \alpha v_x=2 \alpha^2 y$

$\therefore \vec{F}=m \vec{a}=2 m \alpha^2(x \hat{x}+y \hat{y})$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.