A particle of mass $m$ moving horizontally with $v_0$ strikes $a$ smooth wedge of mass $M$, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to $a$ height $h$. When the particle has risen to $a$ height $h$ on the wedge, then choose the correct alternative $(s)$

37-758

  • A

    The particle is stationary with respect to ground

  • B

    Both are stationary with respect to the centre of mass

  • C

    The kinetic energy with respect to centre of mass is converted into potential energy

  • D

    Both $(B)$ and $(C)$

Similar Questions

Three balls, $A, B$ and $C$ are released and all reach the point $X$ (shown in the figure). Balls $A$ and $B$ are released from two identical structures, one kept on the ground and the other at height $h$, from the ground as shown in the figure. They take time $t_A$ and $t_B$ respectively to reach $X$ (time starts after they leave the end of the horizontal portion of the structure). The ball $C$ is released from a point at height $h$, vertically above $X$ and reaches $X$ in time $t_C$. Choose the correct option.

  • [KVPY 2020]

A particle of mass $m$ moving horizontally with $v_0$ strikes $a$ smooth wedge of mass $M$, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to $a$ height $h$. Choose the correct statement related to the wedge $M$

A bullet of mass $0.02\, kg$ travelling horizontally with velocity $250\, ms^{-1}$ strikes a block of wood of mass $0.23\, kg$ which rests on a rough horizontal surface. After the impact, the block and bullet move together and come to rest after travelling a distance of $40\,m$. The coefficient of sliding friction of the rough surface is $(g = 9.8\, ms^{-2})$

Two balls at same temperature collide. What is conserved

A tennis ball is dropped on a horizontal smooth surface. It bounces back to its original position after hitting the surface. The force on the ball during the collision is proportional to the length of compression of the ball. Which one of the following sketches describes the variation of its kinetic energy $K$ with time $t$ most appropriately? The figures are only illustrative and not to the scale.

  • [IIT 2014]