A plane electromagnetic wave in a non-magnetic dielectric medium is given by $\vec E\, = \,{\vec E_0}\,(4 \times {10^{ - 7}}\,x - 50t)$ with distance being in meter and time in seconds. The dielectric constant of the medium is
$2.4$
$5.8$
$8.2$
$4.8$
If radiation is totally absorbed and energy incident on surface in time $t$ be $U$ then write equation of momentum imparted to surface.
In an apparatus, the electric field was found to oscillate with an amplitude of $18 V/m. $ The magnitude of the oscillating magnetic field will be
The electric field in a plane electromagnetic wave is given by
$\overrightarrow{{E}}=200 \cos \left[\left(\frac{0.5 \times 10^{3}}{{m}}\right) {x}-\left(1.5 \times 10^{11} \frac{{rad}}{{s}} \times {t}\right)\right] \frac{{V}}{{m}} \hat{{j}}$
If this wave falls normally on a perfectly reflecting surface having an area of $100 \;{cm}^{2}$. If the radiation pressure exerted by the $E.M.$ wave on the surface during a $10\, minute$ exposure is $\frac{{x}}{10^{9}} \frac{{N}}{{m}^{2}}$. Find the value of ${x}$.
Electric field in a plane electromagnetic wave is given by ${E}=50 \sin \left(500 {x}-10 \times 10^{10} {t}\right) \,{V} / {m}$ The velocity of electromagnetic wave in this medium is :
(Given ${C}=$ speed of light in vacuum)
The velocity of certain ions that pass undeflected through crossed electric field $E = 7.7\,k\,V /m$ and magnetic field $B = 0.14\,T$ is.....$km/s$