Gujarati
Hindi
9-1.Fluid Mechanics
hard

A plastic circular disc of radius $R$ is placed on a thin oil film, spread over a flat horizontal surface. The torque required to spin the disc about its central vertical axis with a constant angular velocity is proportional to

A

$R^2$

B

$R^3$

C

$R^4$

D

$R^6$

Solution

Let coefficient of viscosity $\&$ thickness of film

$\rightarrow \eta \&$ x respectively

Viscous force on element ring is 

$\mathrm{dF}=\eta(2 \pi \mathrm{rdr})\left[\frac{\mathrm{wr}-0}{\mathrm{x}}\right]$

$\mathrm{d} \tau=(\mathrm{dF}) r$

$\therefore \tau=\frac{\eta 2 \pi \mathrm{w}}{\mathrm{t}} \int_{0}^{\mathrm{R}} \mathrm{r}^{3} \cdot \mathrm{dr}=\left(\frac{\eta(2 \pi) \mathrm{w}}{4 \mathrm{x}}\right) \mathrm{R}^{4}$

$\therefore \tau \propto R^{4}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.