A projectile is projected with velocity $k{v_e}$ in vertically upward direction from the ground into the space. ($v_e$ is escape velocity and $k < 1$). If air resistance is considered to be negligible then the maximum height from the centre of earth to whichit can go, will be : ($R =$ radius of earth)

  • A

    $\frac{R}{{{k^2} + 1}}$

  • B

    $\frac{R}{{{k^2} - 1}}$

  • C

    $\frac{R}{{1 - {k^2}}}$

  • D

    $\frac{R}{{k + 1}}$

Similar Questions

A mass $m$ , travelling at speed $V_0$ in a straight line from far away is deflected when it passes near a black hole of mass $M$ which is at a perpendicular distance $R$ from the original line of flight. $a$ , the distance of closest approach between the mass and the black hole is given by the relation

The change in the value of $‘g’$ at a height $‘h’$ above the surface of the earth is the same as at a depth $‘d’$ below the surface of earth. When both $‘d’$ and $‘h’$ are much smaller than the radius of earth, then which one of the following is correct?

A body of mass $m$ is kept at a small height $h$ above the ground. If the radius of the earth is $R$ and its mass is $M$, the potential energy of the body and earth system (with $h = \infty $ being the reference position ) is

If the radius of the earth were shrink by $1\%$ and its mass remaining the same, the acceleration due to gravity on the earth's surface would

The magnitudes of gravitational field at distance $r_1$ and $r_2$ from the centre of a uniform sphere of radius $R$ and mass $M$ are $F_1$ and $F_2$ respectively. Then