Gujarati
Hindi
13.Nuclei
normal

A radio nuclide $A_1$ with decay constant $\lambda_1$  transforms into a radio nuclide $A_2$ with decay constant $\lambda_2$ . If at the initial moment the preparation contained only the radio nuclide $A_1$, then the time interval after which the activity of the radio nuclide $A_2$ reaches its maximum value is :-

A

$\frac{{\ln \left( {{\lambda _2}/{\lambda _1}} \right)}}{{{\lambda _2} - {\lambda _1}}}$

B

$\frac{{\ln \left( {{\lambda _2}/{\lambda _1}} \right)}}{{{\lambda _2} + {\lambda _1}}}$

C

$\ln \left( {{\lambda _2} - {\lambda _1}} \right)$

D

${e^{ - \left( {{\lambda _1 - }{\lambda _2}} \right)}}$

Solution

Suppose $N_{1}$ and $N_{2}$ are the number of two radionuclides $A_{1}, A_{2}$ at time $t$

Then

$\frac{d N_{1}}{d t}=-\lambda_{1} N_{1}(1)$

$\frac{d N_{2}}{d t}=\lambda_{1} N_{1}-\lambda_{2} N_{2}(2)$

From $(1)$

$N_{1}=N_{10} e^{-\lambda_{1} t}$

where $N_{10}$ is the initial number of nuclides $A_{1}$ at time $t=0$

From $(2)$

$\left(\frac{d N_{2}}{d t}+\lambda_{2} N_{2}\right) e^{\lambda_{2} t}=\lambda_{1} N_{10} e^{-\left(\lambda_{1}-\lambda_{2}\right) t}$

$\operatorname{or}\left(N_{2} e^{\lambda_{2} t}\right)=\operatorname{const} \frac{\lambda_{1} N_{10}}{\lambda_{1}-\lambda_{2}} e^{-\left(\lambda_{1}-\lambda_{2}\right) t}$

since $N_{2}=0$ at $t=0$

constant $N_{2}=\frac{\lambda_{1} N_{10}}{\lambda_{1}-\lambda_{2}}$

Thus $=\frac{\lambda_{1} N_{10}}{\lambda_{1}-\lambda_{2}}\left(e^{-\lambda_{2} t-e^{-\lambda_{1} t}}\right)$

(b) The activity of nuclide $A_{2}$ is $\lambda_{2} N_{2} .$ This is maximum when $N_{2}$ is maximum. That happens when

$\frac{d N_{2}}{d t}=0$

This require $\lambda_{2} e^{-\lambda_{2} t_{m}=\lambda_{1} e^{-\lambda_{2} tm}}$

$\operatorname{or} t_{m}=\frac{\ln \left(\lambda_{1} / \lambda_{2}\right)}{\lambda_{1}-\lambda_{2}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.