Gujarati
Hindi
13.Nuclei
medium

A radioactive nucleus $A$ has a single decay mode with half-life $\tau_A$. Another radioactive nucleus $B$ has two decay modes $1$ and $2$. If decay mode $2$ were absent, the half-life of $B$ would have been $\tau_A / 2$. If decay mode $1$ were absent, the half-life of $B$ would have been $3 \tau_A$. If the actual half life of $B$ is $\tau_B$, then the ratio $\tau_B / \tau_A$ is

A

$3 / 7$

B

$7 / 2$

C

$7 / 3$

D

$1$

(KVPY-2012)

Solution

(a)

For material $B$, total disintegration constant.

$\lambda=\lambda_1+\lambda_2$

$\Rightarrow \quad \frac{1}{\tau_B}=\frac{1}{T_1}+\frac{1}{T_2}$

where, $\lambda=$ decay constant

and $\tau_B=$ half-life time of sample.

$\Rightarrow \quad \frac{1}{\tau_B}=\frac{1}{\left(\tau_A / 2\right)}+\frac{1}{3 \tau_A}$

$\Rightarrow \quad \tau_B=\frac{\left(\frac{\tau_A}{2}\right) 3 \tau_A}{\left(\frac{\tau_A}{2}\right)+3 \tau_A}=\left(\frac{\frac{3}{2}}{\frac{7}{2}}\right) \tau_A$

$\text { or } \quad \tau_B=\frac{3}{7} \tau_A \Rightarrow \frac{\tau_B}{\tau_A}=\frac{3}{7}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.