- Home
- Standard 11
- Physics
A rigid massless rod of length $6\ L$ is suspended horizontally by means of two elasticrods $PQ$ and $RS$ as given figure. Their area of cross section, young's modulus and lengths are mentioned in figure. Find deflection of end $S$ in equilibrium state. Free end of rigid rod is pushed down by a constant force . $A$ is area of cross section, $Y$ is young's modulus of elasticity

$\frac {6FL}{4AY}$
$\frac {9FL}{8AY}$
$\frac {FL}{6AY}$
$\frac {FL}{4AY}$
Solution

In equilibrium condition
$S_{Q}=\frac{T_{s}\left(\frac{3 L}{2}\right)}{2 A(2 Y)}=\frac{9 F L}{8 A Y}$
$\mathrm{F}=\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{Q}}$
$\mathrm{F}(6 \mathrm{L})=\mathrm{T}_{\mathrm{D}}(2 \mathrm{L})$
$\mathrm{T}_{\mathrm{S}}=3 \mathrm{F}$
$\mathrm{T}_{Q}=2 \mathrm{F}$
Similar Questions
Column$-II$ is related to Column$-I$. Join them appropriately :
Column $-I$ | Column $-II$ |
$(a)$ When temperature raised Young’s modulus of body | $(i)$ Zero |
$(b)$ Young’s modulus for air | $(ii)$ Infinite |
$(iii)$ Decreases | |
$(iv)$Increases |