A rope of length $L$ and uniform linear density is hanging from the ceiling. A transverse wave pulse, generated close to the free end of the rope, travels upwards through the rope. Select the correct option.

  • [KVPY 2019]
  • A

    The speed of the pulse decreases as it moves up.

  • B

    The time taken by the pulse to travel the length of the rope is proportional to $\sqrt{L}$.

  • C

    The tension will be constant along the length of the rope.

  • D

    The speed of the pulse will be constant along the length of the rope.

Similar Questions

A wire of variable mass per unit length $\mu = \mu _0x$ , is hanging from the ceiling as shown in figure. The length of wire is $l_0$ . A small transverse disturbance is produced at its lower end. Find the time after which the disturbance will reach to the other ends

The transverse displacement of a string (clamped at its both ends) is given by

$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$

where $x$ and $y$ are in $m$ and $t$ in $s$. The length of the string is $1.5\; m$ and its mass is $3.0 \times 10^{-2}\; kg$

Answer the following:

$(a)$ Does the function represent a travelling wave or a stationary wave?

$(b)$ Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency, and speed of each wave?

$(c)$ Determine the tension in the string.

Write equation of transverse wave speed for stretched string.

Figure here shows an incident pulse $P$ reflected from a rigid support. Which one of $A, B, C, D$ represents the reflected pulse correctly

A uniform rope of mass $6\,kg$ hangs vertically from a rigid support. A block of mass $2\,kg$ is attached to the free end of the rope. A transverse pulse of wavelength $0.06\,m$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top is (in $m$ )