A small drop of water falls from rest through a large height $h$ in air; the final velocity is ................
Proportional to $\sqrt{h}$
Proportional to $h$
Inversely proportional to $h$
Almost independent of $h$
Velocity of water in a river is
If the terminal speed of a sphere of gold ( density $= 19.5 kg/m^3$) is $0.2\ m/s$ in a viscous liquid (density $= 1.5\ kg/m^3$ ), find the terminal speed (in $m/s$) of a sphere of silver (density $= 10.5\ kg/m^3$) of the same size in the same liquid ...... $m/s$
If a ball of steel (density $\rho=7.8 \;gcm ^{-3}$) attains a terminal velocity of $10 \;cms ^{-1}$ when falling in a tank of water (coefficient of viscosity $\eta_{\text {water }}=8.5 \times 10^{-4} \;Pa - s$ ) then its terminal velocity in glycerine $\left(\rho=12 gcm ^{-3}, \eta=13.2\right)$ would be nearly
A particle released from rest is falling through a thick fluid under gravity. The fluid exerts a resistive force on the particle proportional to the square of its speed. Which one of the following graphs best depicts the variation of its speed $v$ with time $t$ ?
A small spherical solid ball is dropped in a viscous liquid. Its journey in the liquid is best described in the figure drawn by:-