Gujarati
Hindi
14.Waves and Sound
normal

A sound absorber attenuates (decreases) the sound level by $20\, dB$. The intensity decreases by a factor of

A

$100$

B

$1000$

C

$10000$

D

$10$

Solution

$\mathrm{L}_{1}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}}\right) ; \quad \mathrm{L}_{2}=10 \log \left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{0}}\right)$

$\therefore \mathrm{L}_{1}-\mathrm{L}_{2}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}}\right)-10 \log \left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{0}}\right)$

or $\quad \Delta \mathrm{L}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right) \quad$ or $\quad 20 \mathrm{dB}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)$

or $10^{2}=\frac{I_{1}}{I_{2}}$ or $I_{2}=\frac{I_{1}}{100}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.