14.Waves and Sound
normal

A sound absorber attenuates the sound level by $20\, dB$. The intensity decreases by a factor of

A

$100$

B

$1000$

C

$10000$

D

$10$

Solution

We have, $L_{1}=10 \log \left(\frac{I_{1}}{I_{0}}\right)$

$\mathrm{L}_{2}=10 \log \left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{0}}\right)$

$\mathrm{L}_{1}-\mathrm{L}_{2}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}}\right)-10 \log \left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{0}}\right)$

or, $\quad \Delta \mathrm{L}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}} \times \frac{\mathrm{I}_{0}}{\mathrm{I}_{2}}\right)$

or, $\quad \Delta \mathrm{L}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)$

or, $\quad 20=10 \log \left(\frac{I_{1}}{I_{2}}\right)$

or, $\quad 2=\log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)$

or, $\quad \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=10^{2}$

or, $\quad \mathrm{I}_{2}=\frac{\mathrm{I}_{1}}{100}$

$\Rightarrow$ Intensity decreases by a factor $100 .$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.