Gujarati
Hindi
4-1.Newton's Laws of Motion
normal

A spacecraft of mass $M$ moves with velocity $V$ in free space at first, then it explodes breaking into two pieces. If after explosion a piece of mass $m$ comes to rest, the other piece of spacecraft will have a velocity

A$\frac{{MV}}{{M - m}}$
B$\frac{{MV}}{{M + m}}$
C$\frac{{mV}}{{M - m}}$
D$\frac{{mV}}{{M + m}}$

Solution

According to law of conservation of momentum
$\overrightarrow{\mathrm{P}_{\mathrm{s}}}=\text { costant or } \overrightarrow{\mathrm{P}}_{\text {spacecraft }}=\overrightarrow{\mathrm{P}}_{\text {pieces }}$
$\mathrm{or} \mathrm{MV}=\mathrm{m} \times 0+(\mathrm{M}-\mathrm{m}) \mathrm{v}$ or $\mathrm{v}=\left(\frac{\mathrm{MV}}{\mathrm{M}-\mathrm{m}}\right)$
Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.