A spherical drop of mercury having a potential of $2.5\, V$ is obtained as a result of merging $125$ droplets. The potential of constituent droplets would be........$V$
$1$
$0.5$
$0.2$
$0.1$
There is a uniform electrostatic field in a region. The potential at various points on a small sphere centred at $P$, in the region, is found to vary between in the limits $589.0\,V$ to $589.8\, V$. What is the potential at a point on the sphere whose radius vector makes an angle of $60^o$ with the direction of the field ?........$V$
Four point charges $-Q, -q, 2q$ and $2Q$ are placed, one at each comer of the square. The relation between $Q$ and $q$ for which the potential at the centre of the square is zero is
The electric potential at the surface of an atomic nucleus $(z=50)$ of radius $9 \times 10^{-13} \mathrm{~cm}$ is ________$\times 10^6 \mathrm{~V}$.
The two thin coaxial rings, each of radius $'a'$ and having charges $+{Q}$ and $-{Q}$ respectively are separated by a distance of $'s'.$ The potential difference between the centres of the two rings is :
Three charges $2 q,-q$ and $-q$ are located at the vertices of an equilateral triangle. At the center of the triangle