A spring $40\,mm$ long is stretched by the application of a force. If $10\, N$ force is required to stretch the spring through $1\, mm$, then work done in stretching the spring through $40\, mm$ is ............. $\mathrm{J}$
$84$
$68$
$23$
$8$
$A$ spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring an elongation less than $\frac{{2\mu mg}}{K}$ but more than $\frac{{\mu mg}}{K}$ and released.The correct statement is
$A$ small block of mass $m$ is placed on $a$ wedge of mass $M$ as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant $k$. If $a'$ is the acceleration of $m$ relative to the wedge as it starts coming down and $A$ is the acceleration acquired by the wedge as the block starts coming down, then Maximum retardation of $M$ is:
A ball is dropped from a height of $80\,m$ on a surface which is at rest. Find the height attainded by ball after $2^{nd}$ collision if coefficient of restitution $e = 0.5$ ............ $\mathrm{m}$
A toy gun fires a plastic pellet with a mass of $0.5\ g$. The pellet is propelled by a spring with a spring constant of $1.25\ N/cm$, which is compressed $2.0\ cm$ before firing. The plastic pellet travels horizontally $10\ cm$ down the barrel (from its compressed position) with a constant friction force of $0.0475\ N$. What is the speed (in $SI\ units$) of the bullet as it emerges from the barrel?
Two identical blocks $A$ and $B$, each of mass $'m'$ resting on smooth floor are connected by a light spring of natural length $L$ and spring constant $K$, with the spring at its natural length. $A$ third identical block $'C'$ (mass $m$) moving with a speed $v$ along the line joining $A$ and $B$ collides with $A$. the maximum compression in the spring is