A spring of force constant $800\, N/m$ has an extension of $5\,cm$. The work done in extending it from $ 5\,cm$ to $15 \,cm$ is ............. $\mathrm{J}$

  • [AIEEE 2002]
  • A

    $16$

  • B

    $8$

  • C

    $32$

  • D

    $24$

Similar Questions

When a $1.0\,kg$ mass hangs attached to a spring of length $50 cm$, the spring stretches by $2 \,cm$. The mass is pulled down until the length of the spring becomes $60\, cm.$ What is the amount of elastic energy stored in the spring in this condition, if $g = 10 m/s^{2}$ ............. $\mathrm{Joule}$

A block of mass $m$ slides from rest at a height $H$ on a frictionless inclined plane as shown in the figure. It travels a distance $d$ across a rough horizontal surface with coefficient of kinetic friction $\mu$ and compresses a spring of spring constant $k$ by a distance $x$ before coming to rest momentarily. Then the spring extends and the block travels back attaining a final height of $h$. Then,

  • [KVPY 2013]

A block of mass $\sqrt{2}\,kg$ is released from the top of an inclined smooth surface as shown in figure. If spring constant of spring is $100\,N / m$ and block comes to rest after compressing the spring by $1 \,m$, then the distance travelled by block before it comes to rest is ......... $m$

A one kg block moves towards a light spring with a velocity of $8\, m/s$. When the spring is compressed by $3\, m$, its momentum becomes half of the original momentum. Spring constant of the spring is :-

A $1\; kg$ block situated on a rough incline is connected to a spring of spring constant $100\;N m ^{-1}$ as shown in Figure. The block is released from rest with the spring in the unstretched position. The block moves $10 \;cm$ down the incline before coming to rest. Find the coefficient of friction between the block and the incline. Assume that the spring has a negligible mass and the pulley is frictionless.