Gujarati
Hindi
7.Gravitation
normal

A star is modeled as a uniform spherical distribution of matter keeping mass of star constant. How gravitational pressure on surface depends on volume of the star?

A

$P \propto V$

B

$P \propto {V^{\frac{{ - 1}}{3}}}$

C

$P \propto {V^{\frac{{ - 2}}{3}}}$

D

$P \propto {V^{\frac{{ - 4}}{3}}}$

Solution

Gravitional potential energy of star

$\mathrm{U}=-\frac{3 \mathrm{GM}^{2}}{5 \mathrm{R}}$

Volume $\mathrm{V}=\frac{4}{3} \pi \mathrm{R}^{3} \Rightarrow \mathrm{R}=\left(\frac{3 \mathrm{V}}{4 \pi}\right)^{1 / 3}$

$\Rightarrow \mathrm{U}=-\frac{3}{5}\left(\frac{4 \pi}{3}\right)^{1 / 3} \mathrm{GM}^{2} \mathrm{V}^{-1 / 3}$

As $\mathrm{dW}=\mathrm{PdV}=-\mathrm{dU}$

$\Rightarrow P=-\frac{d U}{d V}=\frac{1}{5}\left(\frac{4 \pi}{3}\right)^{1 / 3} V^{-4 / 3}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.