- Home
- Standard 11
- Physics
7.Gravitation
normal
A star is modeled as a uniform spherical distribution of matter keeping mass of star constant. How gravitational pressure on surface depends on volume of the star?
A
$P \propto V$
B
$P \propto {V^{\frac{{ - 1}}{3}}}$
C
$P \propto {V^{\frac{{ - 2}}{3}}}$
D
$P \propto {V^{\frac{{ - 4}}{3}}}$
Solution
Gravitional potential energy of star
$\mathrm{U}=-\frac{3 \mathrm{GM}^{2}}{5 \mathrm{R}}$
Volume $\mathrm{V}=\frac{4}{3} \pi \mathrm{R}^{3} \Rightarrow \mathrm{R}=\left(\frac{3 \mathrm{V}}{4 \pi}\right)^{1 / 3}$
$\Rightarrow \mathrm{U}=-\frac{3}{5}\left(\frac{4 \pi}{3}\right)^{1 / 3} \mathrm{GM}^{2} \mathrm{V}^{-1 / 3}$
As $\mathrm{dW}=\mathrm{PdV}=-\mathrm{dU}$
$\Rightarrow P=-\frac{d U}{d V}=\frac{1}{5}\left(\frac{4 \pi}{3}\right)^{1 / 3} V^{-4 / 3}$
Standard 11
Physics
Similar Questions
hard