Gujarati
2.Motion in Straight Line
hard

A stone thrown down with a speed $u$ takes a time $t_1$ to reach the ground, while another stone thrown upwards from the same point with the same speed takes time $t_2$. The maximum height the second stone reaches from the ground is

A

$\frac{1}{2} g t_1 t_2$

B

$g / 8\left(t_1+t_2\right)^2$

C

$g / 8\left(t_1-t_2\right)^2$

D

$\frac{1}{2} g t_2^2$

(KVPY-2016)

Solution

(b)

$-h=-u t_1+\frac{1}{2}(-g) t_1^2$

or

$h=u t_1+\frac{1}{2} g t_1^2 \quad \dots(i)$

$-h=u t_2-\frac{1}{2} g t_2^2 \quad \dots(ii)$

Adding Eqs. $(i)$ and $(ii)$, we get

$0=u\left(t_1+t_2\right)-\frac{1}{2} g\left(t_1^2-t_2^2\right)$

$\Rightarrow \quad u=\frac{g}{2}\left(t_1-t_2\right)$

Maximum height attained by second stone is

$H=h+\frac{u^2}{2 g}$

$\Rightarrow \quad H=u t_1+\frac{1}{2} g t_1^2+\frac{u^2}{2 g}$

Substituting for $u$ and rearranging,

we get

$H=\frac{g}{8}\left(t_1+t_2\right)^2$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.