A string of mass $m$ and length $l$ hangs from ceiling as shown in the figure. Wave in string moves upward. $v_A$ and $v_B$ are the speeds of wave at $A$ and $B$ respectively. Then $v_B$ is

822-1665

  • A

    $\sqrt 3\,v_A$

  • B

    $v_A$

  • C

    $<\,v_A$

  • D

    $\sqrt 2\,v_A$

Similar Questions

A steel wire has a length of $12.0 \;m$ and a mass of $2.10 \;kg .$ What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at $20\,^{\circ} C =343\; m s ^{-1}$

A steel wire has a length of $12$ $m$ and a mass of $2.10$ $kg$. What will be the speed of a transverse wave on this wire when a tension of $2.06{\rm{ }} \times {10^4}$ $\mathrm{N}$ is applied ?

Equation of travelling wave on a stretched string of linear density $5\,g/m$ is $y = 0.03\,sin\,(450\,t -9x)$ where distance and time are measured in $SI$ united. The tension in the string is ... $N$

  • [JEE MAIN 2019]

Mechanical waves on the surface of a liquid are

The extension in a string, obeying Hooke's law, is $x$. The speed of sound in the stretched string is $v$. If the extension in the string is increased to $1.5x$, the speed of sound will be