- Home
- Standard 13
- Quantitative Aptitude
6.Interest
hard
A sum of money, deposited at some rate $p.c.p.a.$ of compound interest, doubles itself in $4$ years. In how many years will it become $16$ times of itself at the same rate?
A
$16$
B
$12$
C
$10$
D
$8$
Solution
(a) Let the amount be $A,$ rate of interest be rand the required time be $t$ years. Now, according to the question,
$2 A=A\left(1+\frac{r}{100}\right)^{4}$
$\Rightarrow 2=\left(1+\frac{r}{100}\right)^{4}$
Again, $16 A=A\left(1+\frac{r}{100}\right)^{t}$
$\Rightarrow 16=\left(1+\frac{r}{100}\right)^{t}$
$\Rightarrow(2)^{4}=\left(1+\frac{r}{100}\right)^{t}$
Now, putting the value of 2 from Eqn. (1) in Eqn. (2), we get
$\left(1+\frac{r}{100}\right)^{4 \times 4}=\left(1+\frac{r}{100}\right)^{t}$
$\Rightarrow \quad t =(4 \times 4)=16$ years
Standard 13
Quantitative Aptitude
Similar Questions
hard
medium