- Home
- Standard 13
- Quantitative Aptitude
A sum of money placed at compound interest doubles itself in $5 \,years$. It will amount to eight times itself at the same rate of interest in (In $years$)
$7$
$10$
$15$
$20$
Solution
$2 P=P\left(1+\frac{R}{100}\right)^{5}$
Let the number of years at which amount becomes 8 times be $N$.
$\therefore \quad 8 P=P\left(1+\frac{R}{100}\right)^{N}$
$(1) \Rightarrow \quad\left(1+\frac{R}{100}\right)^{5}=2$
$\frac{(2)}{(1)} \Rightarrow \frac{8 P}{2 P}=\frac{P\left(1+\frac{R}{100}\right)^{N}}{P\left(1+\frac{R}{100}\right)^{5}}$
on substitution from $(3),$ we get,
$4=\frac{\left(1+\frac{R}{100}\right)^{N}}{2}$
Or $\left(1+\frac{R}{100}\right)^{N}=8$
(3) $\Rightarrow \quad\left(1+\frac{R}{100}\right)^{5}=2$
$\therefore \quad(4) \Rightarrow \quad\left(1+\frac{R}{100}\right)^{N}=2^{3}=\left[\left(1+\frac{R}{100}\right)^{5}\right]^{3}=\left(1+\frac{R}{100}\right)^{15}$
$\therefore \quad N=15$ years